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Abstract

The brain’s decoding of fast sensory streams is currently impossible to emulate, even approximately, with artificial agents.
For example, robust speech recognition is relatively easy for humans but exceptionally difficult for artificial speech
recognition systems. In this paper, we propose that recognition can be simplified with an internal model of how sensory
input is generated, when formulated in a Bayesian framework. We show that a plausible candidate for an internal or
generative model is a hierarchy of ‘stable heteroclinic channels’. This model describes continuous dynamics in the
environment as a hierarchy of sequences, where slower sequences cause faster sequences. Under this model, online
recognition corresponds to the dynamic decoding of causal sequences, giving a representation of the environment with
predictive power on several timescales. We illustrate the ensuing decoding or recognition scheme using synthetic
sequences of syllables, where syllables are sequences of phonemes and phonemes are sequences of sound-wave
modulations. By presenting anomalous stimuli, we find that the resulting recognition dynamics disclose inference at
multiple time scales and are reminiscent of neuronal dynamics seen in the real brain.
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Introduction

Many aspects of our sensory environment can be described as

dynamic sequences. For example, in the auditory domain, speech

and music are sequences of sound-waves [1,2], where speech can

be described as a sequence of phonemes. Similarly, in the visual

domain, speaking generates sequences of facial cues with biological

motion [3,4]. These auditory and visual sequences have an

important characteristic: the transitions between the elements are

continuous; i.e., it is often impossible to identify a temporal

boundary between two consecutive elements. For example,

phonemes (speech sounds) in a syllable are not discrete entities

that follow each other like beads on a string but rather show

graded transitions to the next phoneme. These transitions make

artificial speech recognition notoriously difficult [5]. Similarly, in

the visual domain, when we observe someone speaking, it is

extremely difficult to determine exactly where the movements

related to a phoneme start or finish. These dynamic sequences,

with brief transitions periods between elements, are an inherent

part of our environment, because sensory input is often generated

by the fluent and continuous movements of other people, or

indeed oneself.

Dynamic sequences are generated on various time-scales. For

example, in speech, formants form phonemes and phonemes form

syllables. Sequences, which exist at different time-scales, are often

structured hierarchically, where sequence elements on one time-

scale constrain the expression of sequences on a finer time-scale;

e.g. a syllable comprises a specific sequence of phonemes. This

functional hierarchy of time-scales may be reflected in the

hierarchical, anatomical organisation of the brain [6]. For

example, in avian brains, there is anatomical and functional

evidence that birdsong is generated and perceived by a

hierarchical system, where low levels represent transient acoustic

details and high levels encode song structure at slower time-scales

[7,8]. An equivalent temporal hierarchy might also exist in the

human brain for representing auditory information, such as speech

[1,9–12].

Here we ask the following question: How does the brain

recognize the dynamic and ambiguous causes of noisy sensory

input? Based on experimental and theoretical evidence [13–18] we

assume the brain is a recognition system that uses an internal

model of its environment. The structure of this model is critical:

On one hand, the form of the model must capture the essential

architecture of the process generating sensory data. On the other

hand, it must also support robust inference. We propose that a

candidate that fulfils both criteria is a model based on a hierarchy

of stable heteroclinic channels (SHCs). SHCs have been

introduced recently as a model of neuronal dynamics per se [19].

Here, we use SHCs as the basis of neuronal recognition, using an

established Bayesian scheme for modelling perception [20]. This

brings together two recent developments in computational

approaches to perception: Namely, winnerless competition in

stable heteroclinic channels and the hypothesis that the brain

performs Bayesian inference. This is important because it connects

a dynamic systems perspective on neuronal dynamics [19,21,22]

with the large body of work on the brain as an inference machine

[13–18].

To demonstrate this we generate artificial speech input

(sequences of syllables) and describe a system that can recognize

these syllables, online from incoming sound waves. We show that

the resulting recognition dynamics display functional characteris-

tics that are reminiscent of psychophysical and neuronal responses.
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Model

In this section, we describe an online recognition scheme for

continuous sequences with hierarchical structure. This scheme

rests on the concept of stable heteroclinic channels (SHCs) [23],

which are combined with an online Bayesian inversion scheme

[20]. We now describe these elements and how they are brought

together. Note that all variables and their meaning are also listed

in Table 1 and 2.

Stable heteroclinic channels (SHCs)
SHCs are attractors formed by artificial neuronal networks,

which prescribe sequences of transient dynamics [22–25]. The key

aspect of these dynamical systems is that their equations of motion

describe a manifold with a series of saddle points. At each saddle

point, trajectories are attracted from nearly all directions but are

expelled in the direction of another saddle point. If the saddle

points are linked up to form a chain, the neuronal state follows a

trajectory that passes through all these points, thereby forming a

sequence. These sequences are exhibited robustly, even in the

presence of high levels of noise. In addition, the dynamics of the

SHCs are itinerant due to dynamical instability in the equations of

motion and noise on the states. This noise also induces a variation

in the exact times that sequence elements are visited. This can be

exploited during recognition, where the SHC places prior

constraints on the sequence that elements (repelling fixed-points)

are visited but does not constrain the exact timing of these visits.

The combination of these two features, robustness of sequence

order but flexibility in sequence timing, makes the SHC a good

candidate for the neuronal encoding of trajectories [19,26].

Rabinovich et al. have used SHCs to explain how spatiotemporal

neuronal dynamics observed in odour perception, or motor

control of a marine mollusc, can be expressed in terms of a

dynamic system [22,27].

Varona et al. used Lotka-Volterra-type dynamics to model a

network of six neurons in a marine mollusc [27]: With particular

lateral inhibition between pairs of neurons and input to each

neuron, the network displayed sequences of activity. Following a

specific order, each neuron became active for a short time and

became inactive again, while the next neuron became active, and

so on. Stable heteroclinic channels rest on a particular form of

attractor manifold that supports itinerant dynamics. This itiner-

ancy can result from deterministic chaos in the absence of noise,

which implies the presence of heteroclinic cycles. When noise is

added, itinerancy can be assured, even if the original system has

stable fixed-points. However, our motivation for considering

stochastic differential equations is to construct a probabilistic

model, where assumptions about the distribution of noise provide

a formal generative model of sensory dynamics.

As reviewed in [22], Lotka-Volterra dynamics can be derived

from simple neural mass models of mean membrane potential and

mean firing rate [21]. Here, we use a different neural mass model,

where the state-vector x can take positive or negative values:

_xx~k {lx{rS xð Þð Þzw

y~S xð Þzz

S xð Þ~ G0

1zexp {bxð Þ

ð1Þ

where the motion of a hidden-state vector (e.g., mean membrane

potentials) x is a nonlinear function of itself with scalar parameters

G0, b, l and a connectivity matrix r. The hidden state-vector

enters a nonlinear function S to generate outcomes (e.g., neuronal

firing rates) y. Each element rij determines the strength of lateral

inhibition from state j to i. Both the state and observation

equations above include additive normally distributed noise

vectors w and z. When choosing specific parameter values (see

below), the states display stereotyped sequences of activity [28].

Rabinovich et al. [19] termed these dynamics ‘stable heteroclinic

channels’ (SHCs). If the channel forms a ring, once a state is

attracted to a saddle point, it will remain in the SHC.

Table 1. Variables used for hierarchies of stable heteroclinic
channels (SHCs).

f ,g Nonlinear evolution and observation function

k Scalar rate constant

x,n Hidden and causal state vectors

G0 , b, l Scalar control parameters:

G0~50

b~0:5

l~0:1

r Inhibitory connectivity matrix

S Sigmoid function

w,z state and observation noise vectors

Rk kth template connectivity matrix

This table lists all variables and their meaning for Eqs. 1 to 3. The additional
superscript jð Þ in Eqs. 2 and 3 denotes the level of the SHC, where level j~1 is

the lowest.
doi:10.1371/journal.pcbi.1000464.t001

Author Summary

Despite tremendous advances in neuroscience, we cannot
yet build machines that recognize the world as effortlessly
as we do. One reason might be that there are computa-
tional approaches to recognition that have not yet been
exploited. Here, we demonstrate that the ability to
recognize temporal sequences might play an important
part. We show that an artificial decoding device can extract
natural speech sounds from sound waves if speech is
generated as dynamic and transient sequences of se-
quences. In principle, this means that artificial recognition
can be implemented robustly and online using dynamic
systems theory and Bayesian inference.

Table 2. Variables used in Bayesian recognition scheme.

y Sensory input vector

u Concatenated hidden and causal state vectors u~ x,vf g
m A model, which specifies the structure of likelihood and priors

q uð Þ Recognition density used by recognition system to approximate the
true but unknown generative density p ujy,mð Þ

F,U,S Free energy, energy, and entropy (scalars)

l Sufficient statistics vector l~ m,Sf g of normal recognition density q

e Prediction error vector (causal states)

e Prediction error vector (hidden states)

This table lists all variables used in Eqs. 4 to 8. Note that all variables except for
m are functions of time.
doi:10.1371/journal.pcbi.1000464.t002
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SHCs represent a form of itinerant dynamics [26,29,30] and

may represent a substrate for neuronal computations [31].

Remarkably, the formation of SHCs seems to depend largely on

the lateral inhibition matrix r and not on the type of neuronal

model; see Ivanchenko et al. [32] for an example using a complex

two-compartment spiking neuron model.

In this paper, we propose to use SHCs not as a model for

neuronal dynamics per se but as a generative model of how sensory

input is generated. This means that we interpret x as hidden states

in the environment, which generate sensory input y. The neuronal

response to sampling sensory input y are described by recognition

dynamics, which decode or deconvolve the causes x from that

input. These recognition dynamics are described below. This re-

interpretation of Eq. 1 is easy to motivate: sensory input is usually

generated by our own body and other organisms. This means

input is often generated by neuronal dynamics of the sort

described in Eq. 1.

Hierarchies of stable heteroclinic channels
A SHC can generate repetitive, stereotyped sequences. For

example, in a system with four saddle points, an SHC forces

trajectories through the saddle points in a sequence, e.g. ‘1-2-3-4-

1-2-3-4-1…’. In contrast, a SHC cannot generate ‘1-2-3-4-3-4-2-

1…’, because the sequence is not repetitive. However, to model

sensory input, for example speech, one must be able to recombine

basic sequence-elements like phonemes in ever-changing sequenc-

es. One solution would be to represent each possible sequence of

phonemes (e.g. each syllable) with a specific SHC. A more

plausible and parsimonious solution is to construct a hierarchy of

SHCs, which can encode sequences generated by SHCs whose

attractor topology (e.g. the channels linking the saddle points) is

changed by a supraordinate SHC. This can be achieved by

making the connectivity matrix r at a subordinate level a function

of the output states of the supra-ordinate level. This enables the

hierarchy to generate sequences of sequences to any hierarchical

depth required.

Following a recent account of how macroscopic cortical

anatomy might relate to time-scales in our environment [6], we

can construct a hierarchy by setting the rate constant k(j) of the j-th

level to a rate that is slower than its subordinate level, k(j{1). As a

result, the states of subordinate levels change faster than the states

of the level above. This means the control parameters r jð Þ at any

level change more slowly than its states, v jð Þ; because the slow

change in the attractor manifold is controlled by the supraordinate

states:

_xx jð Þ~f jð Þzw jð Þ

v jð Þ~g jð Þzz jð Þ

f jð Þ~k jð Þ {lx jð Þ{r jð Þ v jz1ð Þ
� �

S x jð Þ
� �� �

g jð Þ~S x jð Þ
� �

ð2Þ

where the superscript indexes level j (level 1 being the lowest level),

x jð Þ are ‘hidden states’, and v jð Þ are outputs to the subordinate

level, which we will call ‘causal states’. As before, at the first level,

y~v 1ð Þ is the sensory stream. In this paper, we consider

hierarchies with relative time-scales k jð Þ
.

k jz1ð Þ of around four.

This means that the time spent in the vicinity of a saddle point at a

supraordinate level is long enough for the subordinate level to go

through several saddle points. As before, all levels are subject to

noise on the motion of the hidden states w jð Þ and the causal states

z jð Þ. At the highest level, the control parameters, r Lð Þ are constant

over time. At all other levels, the causal states of the supraordinate

level, v jz1ð Þ, enter the subordinate level by changing the control

parameters, the connectivity matrix r jð Þ:

r jð Þ v jz1ð Þ
� �

~
X

k

v
jz1ð Þ

k R
jð Þ

k ð3Þ

Here, r jð Þ is a linear mixture of ‘template’ control matrices R jð Þ,
weighted by the causal states at level jz1. Each of these templates

is chosen to generate a SHC. Below, we will show examples of how

these templates can be constructed to generate various sequential

phenomena. The key point about this construction is that states

from the supraordinate level select which template controls the

dynamics of the lower level. By induction, the states at each level

follow a SHC because the states at the supraordinate level follow a

SHC. This means only one state is active at any time and only one

template is selected for the lower level. An exception to this is the

transition from one state to another, which leads to a transient

superposition of two SHC-inducing templates (see below).

Effectively, the transition transient at a specific level gives rise to

brief spells of non-SHC dynamics at the subordinate levels (see

results). These transition periods are characterized by dissipative

dynamics, due to the largely inhibitory connectivity matrices,

inhibition controlled by parameter l (Eq. 2) and the saturating

nonlinearity S.

In summary, a hierarchy of SHCs generates the sensory stream

y~v 1ð Þ at the lowest (fastest) level, which forms a sequence of

sequences expressed in terms of first-level states. In these models,

the lower level follows a SHC, i.e. the states follow an itinerant

trajectory through a sequence of saddle points. This SHC will

change whenever the supraordinate level, which follows itself a

SHC, moves from one saddle point to another. Effectively, we

have constructed a system that can generate a stable pattern of

transients like an oscillator; however, as shown below, the pattern

can have deep or hierarchical structure. Next, we describe how the

causes v jð Þ can be recognized or deconvolved from sensory input y.

Bayesian recognition using SHC hierarchies and the free-
energy principle

We have described how SHCs can, in principle, generate

sequences of sequences that, we assume, are observed by an agent

as its input y. To recognise the causes of the sensory stream the

agent must infer the hidden states online, i.e. the system does not

look into the future but recognizes the current states x and n of the

environment, at all levels of the hierarchy, by the fusion of current

sensory input and internal dynamics elicited by past input. An

online recognition scheme can be derived from the ‘free-energy

principle’, which states that an agent will minimize its surprise

about its sensory input, under a model it entertains about the

environment; or, equivalently maximise the evidence for that

model [18]. This requires the agent to have a dynamic model,

which relates environmental states to sensory input. In this

context, recognition is the Bayesian inversion of a generative

model. This inversion corresponds to mapping sensory input to the

posterior or conditional distribution of hidden states. In general,

Bayesian accounts of perception rest on a generative model. Given

such a model, one can use the ensuing recognition schemes in

artificial perception and furthermore compare simulated recogni-

tion dynamics (in response to sensory input), with evoked responses

in the brain. The generative model in this paper is dynamical and

based on the nonlinear equations 1 and 2. More precisely, these

Recognition of Sequences
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stochastic differential equations play the role of empirical priors on

the dynamics of hidden states causing sensory data.

In the following, we review briefly, the Bayesian model

inversion described in [20] for stochastic, hierarchical systems

and apply it, in the next section, to hierarchical SHCs.

Given some sensory data vector y, the general inference

problem is to compute the model evidence or marginal likelihood

of y, given a model m:

p yjmð Þ~
ð

p y,ujmð Þdu ð4Þ

where the generative model p y,ujmð Þ~p yju,mð Þp ujmð Þ is defined

in terms of a likelihood p yju,mð Þ and prior p ujmð Þ on hidden

states. In Equation 4, the state vector u~ x,vf g subsumes the

hidden and causal states at all levels of a hierarchy (Eq. 2). The

model evidence can be estimated by converting this difficult

integration problem (Eq. 4) into an easier optimization problem by

optimising a free-energy bound on the log-evidence [33]. This

bound is constructed using Jensen’s inequality and is a function of

an arbitrary recognition density, q uð Þ:

F q,yð Þ ~ {ln p yjmð ÞzD~U{S

D ~
Ð

q uð Þln q uð Þ
p ujy,mð Þ du§0

ð5Þ

The free-energy comprises an energy term

U~{Sln p yjuð Þzln p uð ÞTq and an entropy term

S~{Sln q(u)Tq and is defined uniquely, given a generative

model m. The free-energy is an upper bound on the surprise or

negative log-evidence, because the Kullback-Leibler divergence D,

between the recognition and conditional density, is always positive.

Minimising the free-energy minimises the divergence, rendering

the recognition density q(u) an approximate conditional density.

When using this approach, one usually employs a parameterized

fixed-form recognition density, q u ljð Þ [20]. Inference corresponds

to optimising the free-energy with respect to the sufficient statistics,

l of the recognition density:

l�~ arg min
l

F l,yð Þ

q u l�jð Þ&p u y,mjð Þ
ð6Þ

The optimal statistics l� are sufficient to describe the approximate

posterior density; i.e. the agent’s belief about (or representation of)

the trajectory of the hidden and causal states. We refer the

interested reader to Friston et al. [34] for technical details about

this variational Bayesian treatment of dynamical systems.

Intuitively, this scheme can be thought of as augmented gradient

descent on a free-energy bound on the model’s log-evidence.

Critically, it outperforms conventional Bayesian filtering (e.g.,

Extended Kalman filtering) and eschews the computation of

probability transition matrices. This means it can be implemented

in a simple and neuronally plausible fashion [20].

In short, this recognition scheme operates online and recognizes

current states of the environment by combining current sensory

input with internal recognition dynamics, elicited by past input.

A recognition system that minimizes its free-energy efficiently

will come to represent the environmental dynamics in terms of the

sufficient statistics of recognition density; e.g. the conditional

expectations and variances of q ujlð Þ~N m,Sð Þ : l~ m,Sf g. We

assume that the conditional moments are encoded by neuronal

activity; i.e., Equation 6 prescribes neuronal recognition dynamics.

These dynamics implement Bayesian inversion of the generative

model, under the approximations entailed by the form of the

recognition density. Neuronally, Equation 6 can be implemented

using a message passing scheme, which, in the context of

hierarchical models, involves passing prediction errors up and

passing predictions down, from one level to the next. These

prediction errors are the difference between the causal states

(Equation 2);

e jð Þ~v jð Þ{g jð Þ ð7Þ

at any level j, and their prediction from the level above, evaluated

at the conditional expectations [18,35]. In addition, there are

prediction errors that mediate dynamical priors on the motion of

hidden states within each level (Equation 2);

e jð Þ~ _xx jð Þ{f jð Þ ð8Þ

This means that neuronal populations encode two types of

dynamics: the conditional expectations of states of the world and

the prediction errors. The dynamics of the first are given by

Equation 6, which can be formulated as a function of prediction

error. These dynamics effectively suppress or explain away

prediction error; see [34] for details.

This inversion scheme is a generic recognition process that

receives dynamic sensory input and can, given an appropriate

generative model, rapidly identify and track environmental states

that are generating current input. More precisely, the recognition

dynamics resemble the environmental (hidden) states they track (to

which they are indirectly coupled), but differ from the latter

because they are driven by a gradient descent on free-energy; Eq.

6 (i.e. minimize prediction errors: Eqs. 7 and 8). This is important,

because we want to use SHCs as a generative model, not as a

model of neuronal encoding per se. This means that the neuronal

dynamics will only recapitulate the dynamics entitled by SHCs in

the environment, if the recognition scheme can suppress

prediction errors efficiently in the face of sensory noise and

potential beliefs about the world.

We are now in a position to formulate hierarchies of SHCs as

generative models, use them to generate sensory input and

simulate recognition of the causal states generating that input. In

terms of low-level speech processing, this means that any given

phoneme will predict the next phoneme. At the same time, as

phonemes are recognized, there is also a prediction about which

syllable is the most likely context for generating these phonemes.

This prediction arises due to the learnt regularities in speech. In

turn, the most likely syllable predicts the next phoneme. This

means that speech recognition can be described as a dynamic

process, on multiple time-scales, with recurrently evolving

representations and predictions, all driven by the sensory input.

A model of speech recognition
In the auditory system, higher cortical levels appear to represent

features that are expressed at slower temporal scales [36]. Wang et

al. [37] present evidence from single-neuron recordings that there is

a ‘slowing down’ of representational trajectories from human

auditory sensory thalamus (a ‘relay’ to the primary auditory cortex),

the medial geniculate body (MGB) to primary auditory cortex (AI).

In humans, it has been found that the sensory thalamus responds

preferentially to faster temporal modulations of sensory signals,

whereas primary cortex prefers slower modulations [10]. These

findings indicate that neuronal populations, at lower levels of the

auditory system (e.g. MGB), represent faster environmental

Recognition of Sequences
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trajectories than higher levels (e.g., A1). Specifically, the,MGB

responds preferentially to temporal modulations of ,20 Hz

(,50 ms), whereas AI prefers modulations at ,6 Hz (,150 ms)

[10]. Such a temporal hierarchy would be optimal for speech

recognition, in which information over longer time-scales provides

predictions for processing at shorter time scales. In accord with this

conjecture, optimal encoding of fast (rapidly modulated) dynamics

by top-down predictions has been found to be critical for

communication [1,12,38].

We model this ‘slowing down’ with a hierarchical generative

model based on SHCs. This model generates sequences of

syllables, where each syllable is a sequence of phonemes.

Phonemes are the smallest speech sounds that distinguishes

meaning and a syllable is a unit of organization for a sequence

of phonemes. Each phoneme prescribes a sequence of sound-wave

modulations which correspond to sensory data. We generated data

in this fashion and simulated online recognition (see Figure 1). By

recognizing speech-like phoneme-sequences, we provide a proof-

of-principle that a hierarchical system can use sensory streams to

infer sequences. This not only models the slowing down of

representations in the auditory system [10,12,37,38], but may

point to computational approaches to speech recognition. In

summary, the recognition dynamics following Equation 6 are

coupled to a generative model based on SHCs via sensory input.

The systems generating and recognising states in Fig. 1 are both

dynamic systems, where a non-autonomous recognition system is

coupled to an autonomous system generating speech.

All our simulations used hierarchies with two levels (Figure 2).

The first (phonemic) level produces a sequence of phonemes, and

the second (syllabic) level encodes sequences of syllables. We used

Equation 2 to produce phoneme sequences, where the generating

parameters are listed in Table 3. The template matrices R jð Þ

(Equation 3) were produced in the following way: We first specified

the sequence each template should induce; e.g., sequence 1-2-3 for

three neuronal populations. We then set elements on the main

diagonal to 1, the elements (2,1), (3,2), (1,3) to value 0.5, and all

other elements to 5 [28]. More generally for sequence s1, . . . ,sN

Ril~

1 i~l

:5 i~s1,l~sN

:5 i~snz1,l~sn

5 otherwise

8>>><
>>>:

ð9Þ

Note that SHC hierarchies can be used to create a variety of

Figure 1. Schematic of the generative model and recognition system. This schematic shows the equations which define both the generation
of stimuli (left, see Equation 2) and the recognition scheme based on a generative model. There are three levels; the phonemic and syllabic levels
employ stable heteroclinic channels, while the acoustic level is implemented by a linear transform. W corresponds to sound file extracts and w is the
resulting sound wave. This sound wave is input to the recognition system, with a linear (forward) projection using the pseudo-inverse Wz. The
recognition of the phonemic and syllabic level uses bottom-up and top-down message passing between the phonemic and syllabic level, following
Equation 6.
doi:10.1371/journal.pcbi.1000464.g001
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different behaviours, using different connectivity matrices. Here

we explore only a subset of possible sequential dynamics.

When generating sensory data y, we added noise w jð Þ and z jð Þ to

both the hidden and causal states. At the first and second levels,

this was normally distributed zero-mean noise with log-precisions

of ten and sixteen, respectively. These noise levels were chosen to

introduce noisy dynamics but not to the extent that the recognition

became difficult to visualise. We repeated all the simulations

reported below with higher noise levels and found that the findings

remained qualitatively the same (results not shown). Synthetic

stimuli were generated by taking a linear mixture of sound waves

extracted from sound files, in which a single speaker pronounced

each of four vowel-phonemes: [a], [e], [i], [o]. These extracts W

were sampled at 22050 Hz and about 14 ms long. The mixture

was weighted by the causal states of the phonemic level; w~Wv 1ð Þ.
This resulted in a concatenated sound wave file w. When this

sound file is played, one perceives a sequence of vowels with

smooth, overlapping transitions (audio file S1). These transitions

are driven by the SHCs guiding the expression of the phonemes

and syllables at both levels of the generative hierarchy.

For computational simplicity, we circumvented a detailed

generative model of the acoustic level. For simulated recognition,

the acoustic input (the sound wave) was transformed to phonemic

input by inverting the linear mixing described above every seven

ms of simulated time (one time bin). This means that our

recognition scheme at the acoustic level assumes forward

processing only (Fig. 1). However, in principle, given an

appropriate generative model [39,40], one could invert a full

acoustic model, using forward and backward message passing

between the acoustic and phonemic levels.

Results

In this section, we illustrate that the recognition scheme

described above can reliably decode syllabic and phonemic

structure from sensory input online, if it has the correct generative

model. We will also describe how recognition fails when the

generative model does not have a form that provides veridical

predictions of the sensorium, e.g., when agents are not conspecific

or we hear a foreign language. These simulations relate to

empirical studies of brain responses evoked by unpredicted

linguistic stimuli. We conclude with a more subtle violation that

we deal with in everyday audition; namely the recognition of

speech presented at different speeds.

Recognising a sequence of sequences
To create synthetic stimuli we generated syllable sequences

consisting of four phonemes or states; [a], [e], [i], and [o], over

11.25 seconds (800 time points), using a two-level SHC model

(Fig. 2). To simulate word-like stimuli, we imposed silence at the

beginning and the end by windowing the phoneme sequence

(Fig. 3A, top left). At the syllabic level, we used three syllables or

states to form the second-level sequence (1–2–3)(2); where the

numbers denote the sequence and the superscript indicates the

Figure 2. Two-level model to generate phoneme sequences. Schematic illustration of the phoneme sequence generation process. At the
syllabic level, one of three syllables is active and induces a specific lateral connectivity structure at the phonemic level. The transition speed at the
phonemic level is four times faster than at the syllabic level. The resulting phoneme and syllable dynamics of the model are shown in Fig. 3a.
doi:10.1371/journal.pcbi.1000464.g002
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sequence level. The three causal states v 2ð Þ of the syllabic level

entered the phonemic level as control parameters to induce their

template matrices as in Equation 3. This means that each of the

three syllable states at the second level causes a phoneme sequence

at the first: a{e{i{oð Þ 1ð Þ
, o{i{e{að Þ 1ð Þ

, and

a{i{e{oð Þ 1ð Þ
, see Fig. 2 and listen to the audio file S1. In

Fig. 3A we show the causal and hidden states, at both levels,

generated by this model. The remaining parameters, for both

levels, are listed in Table 3. Note that the rate constant of the

syllabic level is four times slower than at the phonemic level. As

expected, the phoneme sequence at the first level changes as a

function of the active syllable at the second level. The transients

caused by transitions between syllables manifest at the first level as

temporary changes in the amplitude or duration of the active

phoneme.

We then simulated recognition of these sequences. Fig. 3B

shows that our recognition model successfully tracks the true states

at both levels. Note the recognition dynamics rapidly ‘lock onto’

the causal states from the onset of the first phoneme of the first

syllable (time point 50). Interestingly, the system did not recognize

the first syllable (true: syllable 3 (red line), recognized: syllable 2

(green line) between time points 50 to 80 (see red arrow in Fig. 3B),

but corrected itself fairly quickly, when the sensory stream

indicated a new phoneme that could only be explained by the

third syllable. This initial transient at the syllabic level shows that

recognition dynamics can show small but revealing deviations

from the true state dynamics. In principle, these deviations could

be used to test whether the real auditory system uses a recognition

algorithm similar to the one proposed; in particular, the simulated

Table 3. Default parameters used for simulations with
Equations 2 and 3.

l 0.3

G0 50

b 0.5

k 1ð Þ 1/8

k 2ð Þ 1/32

doi:10.1371/journal.pcbi.1000464.t003

Figure 3. Recognition of a sequence of sequences. (A): Dynamics of generated causal and hidden states at the phonemic and syllabic level,
using Equation 2. At the syllabic level, there are three different syllables (1: blue, 2: green, 3: red), following the syllable sequence 1R2R3. The slowly
changing state Syllable 1 causes the faster-moving phoneme sequence aReRiRo (blueRgreenRredRcyan), syllable 2: oRiReRa
(cyanRredRgreenRblue), and syllable 3: aRiReRo (blueRredRgreenRcyan). See Fig 2 for a schematic description of these sequences. At
the beginning and end of the time-series v 1ð Þ (top-left plot), we introduced silence by applying a windowing function to zero time points 0 to 50 and
750 to 800. The red arrow indicates the end of the initial silent period. The phonemic states v 1ð Þ cause sound waves, resolved at 22050 Hz (see Fig. 1).
These sound waves are the input to the recognition system. (B): The recognition dynamics after inverting the sound wave. At the phonemic level, the
states follow the true states closely. At the syllabic level, the recognized causal state dynamics v 2ð Þ are rougher than the true states but track the true
syllable sequence veridically. The high-amplitude transients of v 2ð Þ at the beginning and end of the time-series are due to the silent periods, where
the syllabic recognition states v 2ð Þ experience high uncertainty (plotted in grey: confidence intervals of 95% around the mean). Note that the hidden
states, at both levels, experience high uncertainty whenever a phoneme or syllable is inactive. The red arrow indicates an initial but rapidly corrected
mis-recognition of the causing syllable.
doi:10.1371/journal.pcbi.1000464.g003

Recognition of Sequences

PLoS Computational Biology | www.ploscompbiol.org 7 August 2009 | Volume 5 | Issue 8 | e1000464



recognition dynamics could be used to explain empirical

neurophysiological responses.

Sensitivity to sequence violations
What happens if the stimuli deviate from learned expectations

(e.g. violation of phonotactic rules)? In other words, what happens

if we presented known phonemes that form unknown syllables?

This question is interesting for two reasons. First, our artificial

recognition scheme should do what we expect real brains to do

when listening to a foreign language: they should be able to

recognize the phonemes but should not derive high-order

‘meaning’ from them; i.e. should not recognize any syllable.

Secondly, there are well-characterised brain responses to phono-

tactic violations, e.g. [41–43]. These are usually event-related

responses that contain specific waveform components late in

peristimulus time, such as the N400. The N400 is an event-related

potential (ERP) component typically elicited by unexpected

linguistic stimuli. It is characterized as a negative deflection

(topologically distributed over central-parietal sites on the scalp),

peaking approximately 400 ms after the presentation of an

unexpected stimulus.

To model phonotactic violations, we generated data with the

two-level model presented above. However, we used syllables, i.e.

sequences of phonemes, that the recognition scheme was not

informed about and consequently could not recognise (it has three

syllables in its repertoire: a{i{o{eð Þ 1ð Þ
, a{o{e{ið Þ 1ð Þ

, and

a{e{o{ið Þ 1ð Þ
). Thus the recognition scheme knows all four

phonemes but is unable to predict the sequences heard. Fig. 4A

shows that the recognition system cannot track the syllables; the

recognized syllables are very different from the true syllable

dynamics. At the phonemic level, the prediction error e 1ð Þ deviates

from zero whenever a new (unexpected) phoneme is encountered

(Fig. 4B). The prediction error at the syllabic level is sometimes

spike-like and can reach high amplitudes, relative to the typical

amplitudes of the true states (see Fig. 4A and B). This means that

the prediction error signals violation of phonotactic rules. In

Fig. 4C, we zoom in onto time points 440 to 470 to show how the

prediction error evolves when evidence of a phonotactic violation

emerges: At the phoneme level, prediction error builds up because

an unexpected phoneme appears. After time point 450, the

prediction error e 1ð Þ grows quickly, up to the point that the system

resolves the prediction error. This is done by ‘switching’ to a new

syllable, which can explain the transition to the emerging

phoneme. The switching creates a large amplitude prediction

error e 2ð Þ at time point 460. In other words, in face of emerging

evidence that its current representation of syllables and phonemes

cannot explain sensory input, the system switches rapidly to a new

syllable representation, giving rise to a new prediction error. It

Figure 4. Recognition of sequences with phonotactic violation. (A): True and recognized syllable dynamics of a two-level model when the
syllables are unknown to the recognition system. Left: True dynamics of v 2ð Þ, Right: Recognition dynamics for v 2ð Þ. (B): Left: Prediction error e 1ð Þ at
phonemic level. Right: Prediction error e 2ð Þ at syllabic level. (C): Zoom of dynamics shown in A and B from time points 440 to 470. See text for
description of these dynamics.
doi:10.1371/journal.pcbi.1000464.g004
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may be that these prediction errors are related to electrophysio-

logical responses to violations of phonotactic rules, [44,45]. This is

because the largest contributors to non-invasive electromagnetic

signals are thought to be superficial pyramidal cells. In biological

implementations of the recognition scheme used here [20], these

cells encode prediction error.

In summary, these simulations show that a recognition system

cannot represent trajectories or sequences that are not part of its

generative model. In these circumstances, recognition experiences

intermittent high-amplitude prediction errors because the internal

predictions do not match the sensory input. There is a clear formal

analogy between the expression of prediction error in these

simulations and mismatch or prediction violation responses

observed empirically. The literature that examines event-related

brain potentials (ERPs) and novelty processing ‘‘reveals that the

orienting response engendered by deviant or unexpected events

consists of a characteristic ERP pattern, comprised sequentially of

the mismatch negativity (MMN) and the novelty P3 or P3a’’ [46].

Robustness to speed of speech
Human speech recognition is robust to the speed of speech

[47,48]. How do our brains recognize speech at different rates?

There are two possible mechanisms in our model that can deal with

‘speaker speed’ parameters online. First, one could make the rate

constants k 1ð Þ and k 2ð Þ free parameters and optimise them during

inversion. Adjusting to different speaker parameters is probably an

essential faculty, because people speak at different speeds [49]. The

second mechanism is that the recognition itself might be robust to

deviations from the expected rate of phonemic transitions; i.e., even

though the recognition uses the rate parameters appropriate for

much slower speech, it still can recognize fast speech. This might

explain why human listeners can understand speech at rates that

they have never experienced previously [47]. In the following, we

show that our scheme has this robustness.

To simulate speed differences we used the same two-level model

as in the simulations above with k 1ð Þ~1=8 for the generation of

phonemes, but with k 1ð Þ~1=12 for recognition so that the

stimulus stream was 50% faster than expected. As can be seen

in Fig. 5A, the recognition can successfully track the syllables. This

was because the second level supported the adaption to the fast

sensory input by changing its recognition dynamics in responses to

prediction error (see Fig. 5B: note the amplitude difference in

Fig. 5A between the true and recognized v 2ð Þ). The prediction

errors at both levels, e 1ð Þ and e 2ð Þ, are shown in Fig. 5C. In

particular, the second-level error e 2ð Þ~ _xx 2ð Þ{f 2ð Þ displayed spike-

like corrections around second-level transitions. These are small in

amplitude compared to both the amplitude of the hidden states

and the prediction errors of the previous simulation (Fig. 4B).

These results show that the system can track the true syllables

veridically, where the prediction error accommodates the effects

caused by speed differences. This robustness to variations in the

speed of phoneme transitions might be a feature shared with the

auditory system [50].

Discussion

We have shown that stable heteroclinic channels (SHCs) can be

used as generative models for online recognition. In particular, we

have provided proof-of-concept that sensory input generated by

these hierarchies can be deconvolved to disclose the hidden states

causing that input. This is a non-trivial observation because

nonlinear, hierarchical and stochastic dynamical systems are

difficult to invert online [51,52]. However, we found that the

inversion of models based on SHCs is relatively simple.

Furthermore, the implicit recognition scheme appears robust to

noise and deviations from true parameters. This suggests that

SHCs may be a candidate for neuronal models that contend with

the same problem of de-convolving causes from sensory

consequences. Moreover, hierarchical SHCs seem, in principle,

an appropriate description of natural sequential input, which is

usually generated by our own body or other organisms, and can be

described as a mixture of transients and discrete events.

The general picture of recognition that emerges is as follows:

Sensory input is generated by a hierarchy of dynamic systems in

the environment. We couple this dynamic system, via sensory

sampling, to our recognition system implementing the inversion

dynamics (Fig. 1). The recognition system minimizes a proxy for

surprise or model evidence; the negative free-energy (Eq. 6). To do

this, the states of the recognition system move on manifolds,

defined through the free-energy by the generative model. Here, we

use a hierarchy of SHCs as generative model so that the manifold

changes continuously at various time-scales. The inferred SHC

states never reach a fixed point, but are perpetually following a

trajectory through state-space, in the attempt to mirror the

generative dynamics of the environment. When sensory input is

unexpected (see second simulation, Fig. 4), the system uses the

prediction error to change its representation quickly, at all levels,

such that it best explains the sensory stream.

In a previous paper [6], we have shown that one can use chaotic

attractors (i.e., a hierarchy of Lorenz attractors) to model auditory

perception. However, SHCs may provide a more plausible model

of sensory dynamics: First, they show structure over extended

temporal scales, much like real sensory streams. This may reflect

the fact that the processes generating sensory data are themselves

(usually) neuronal dynamics showing winnerless competition.

Secondly, many chaotic systems like the Lorenz attractor have

only few states and cannot be extended to high dimensions in a

straightforward fashion. This was no problem in our previous

model, where we modelled a series of simple chirps, with varying

amplitude and frequency [6]. However, it would be difficult to

generate sequences of distinct states that populate a high

dimensional state-space; e.g. phonemes in speech. In contrast,

stable heteroclinic channels can be formulated easily in high

dimensional state spaces.

In this paper, we used a generative model which was formally

identical to the process actually generating sensory input. We did

this for simplicity; however, any generative model that could

predict sensory input would be sufficient. In one sense, there is no

true model because it is impossible to disambiguate between

models that have different forms but make the same predictions.

This is a common issue in ill-posed inverse problems, where there

are an infinite number of models that could explain the same data.

In this context the best model is usually identified as the most

parsimonious. Furthermore, we are not suggesting that all aspects

of perception can be framed in terms of the inversion of SHCs; we

only consider recognition of those sensory data that are generated

by mechanisms that are formally similar to the itinerant but

structured dynamics of SHCs.

The proof-of-concept presented above makes the SHC

hierarchy a potential candidate for speech recognition models.

The recognition dynamics we simulated can outpace the dynamics

they are trying to recognise. In all our simulations, after some

initial transient, the recognition started tracking the veridical states

early in the sequence. For example, the scheme can identify the

correct syllable before all of its phonemes have been heard. We

only simulated two levels, but this feature of fast recognition on

exposure to brief parts of the sequence may hold for many more

levels. Such rapid recognition of potentially long sequences is seen
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in real systems; e.g., we can infer that someone is making a cup of

tea from observing a particular movement, like getting a teabag

out of a kitchen cupboard. The reason why recognition can be fast

is that the generative model is nonlinear (through the top-down

control of attractor manifolds). With nonlinearities, slow time-

scales in hierarchical sequences can be recognized rapidly because

they disclose themselves in short unique sequences in the sensory

input. Furthermore, we demonstrated another requirement for

efficient communication: recognition signals, via prediction error,

when unrecognised syllables cannot be decoded with its phono-

tactic model. This is important, because, an agent can decide

online whether its decoding of the message is successful or not.

Following the free-energy principle, this would oblige the agent to

act on its environment, so that future prediction error is minimized

[18]. For example, the prediction error could prompt an action

(‘repeat, please’) and initiate learning of new phonotactic rules.

Another aspect of SHC-based models is that they can

recombine sensory primitives like phonemes in a large number

of ways. This means that neuronal networks implementing SHC

dynamics, based on a few primitives at the first level, can encode a

large number of sequences. This feature is critical for encoding

words in a language; e.g., every language contains many more

words than phonemes [53]. The number of sequences that a SHC

system can encode is

XN

k~3

N

k

� �
k{1ð Þ! ð10Þ

where N is the number of elements [22]. This would mean, in theory,

that the number of states that can be encoded with a sequence, given

a few dozens primitives, is nearly endless. It is unlikely that this full

capacity is exploited in communication. Rather, for efficient

communication, it might be useful to restrict the number of

admissible sequences to make them identifiable early in the sequence.

We did not equip the recognition model with a model of the silent

periods at the beginning and end of a word (Fig. 3A). It is interesting

to see how recognition resolves this: to approximate silence, the

Figure 5. Recognition of unexpectedly fast phoneme sequences. (A): True and recognized syllable dynamics of a two-level model when the
phoneme sequence is generated with a rate constant of k 1ð Þ~1=8 but recognized with a rate constant of k 1ð Þ~1=12, i.e. speech was 50% faster than
expected. Left: True dynamics of v 2ð Þ, Right: Recognition dynamics for v 2ð Þ . (B): Prediction error e 2ð Þ at syllabic level. (C) Top: Prediction error e 1ð Þ at
phonemic level. Bottom: Prediction error e 2ð Þ at syllabic level.
doi:10.1371/journal.pcbi.1000464.g005
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system held hidden phoneme states very negative by driving the

states away from the SHC attractor and tolerating the violation of

top-down predictions. However, the tolerance is limited as can be

seen by the slightly positive inferred hidden states (Fig. 3B). Such

behaviour is beneficial for recognition because the agent, within

bounds, can deviate from internal predictions. A built-in error

tolerance which is sensitive to the kind of errors it should endure to

make recognition robust is important in an uncertain world.

Robustness to errors would be impossible with an inversion scheme

based on a deterministic model, which assumes that the sensory

input follows a deterministic trajectory without any noise on the

environmental causes. With such a recognition system, the agent

could not deal with (unexpected) silence, because the SHC-based

inversion dynamics would attract the state-trajectory without any

means of resolving the resulting prediction error between the zero

(silent) sensory input and the internal predictions. Recognition

schemes based on stochastic systems can deviate adaptively from

prior predictions, with a tolerance related to the variance of the

stochastic innovations. Optimising this second-order parameter

then becomes critical for recognition (see [20]).

Links to neuroscience
There is emerging evidence in several areas of neuroscience that

temporal hierarchies play a critical role in brain function [6]. The

three areas where this is most evident are auditory processing

[12,37,54–56], cognitive control [57–59], and motor control [60].

Our conclusions are based on a generic recognition scheme [20]

and are therefore a consequence of our specific generative model,

a temporal hierarchy of SHCs. This hierarchy of time-scales

agrees well with the temporal anatomy of the hierarchical auditory

system, where populations close to the periphery encode the fast

acoustics, while higher areas form slower representations

[9,10,37,38,61,62]. In particular, our model is consistent with

findings that phonological (high) levels have strong expectations

about the relevance of acoustic (low) dynamics [38].

Neurobiological treatments of the present framework suppose

that superficial pyramidal cell populations encode prediction error;

it is these cells that contribute most to evoked responses as

observed in magneto/electroencephalography (M/EEG) [63].

There is an analogy between the expression of prediction error

in our simulations and mismatch or prediction violation responses

observed empirically. In our simulations, prediction error due to a

deviation from expectations is resolved by all levels (Fig. 4B). This

might be an explanation for prominent responses to prediction

violations to be spatially distributed, e.g., the mismatch negativity,

the P300, and the N400 all seem to involve various brain sources

in temporal and frontal regions [45,46,64–66]. Inference on

predictable auditory streams has been studied and modelled in

several ways, in an attempt to explain the rapid recognition of

words in the context of sentences, e.g., [38,67–70]. Our

simulations show how, in principle, these accounts might be

implemented in terms of neuronal population dynamics.

Links to computational models
Learning, storing, inferring and executing sequences is a key

topic in experimental [71–79], and theoretical neurosciences [80–

82]; and robotics [83–86]. An early approach to modelling

sequence processing focussed on feed-forward architectures.

However, it was realised quickly that these networks could not

store long sequences, because new input overwrote the internal

representation of past states. The solution was to introduce explicit

memory into recurrent networks, in various forms; e.g. as

contextual nodes or ‘short-term memory’ [87,88]. Although

framed in different terms, these approaches can be seen as an

approximation to temporal hierarchies, where different units

encode representations at different time-scales.

A central issue in modelling perception is how sequences are not

just recalled but used as predictions for incoming sensory input.

This requires the ‘dynamic fusion’ of bottom-up sensory input and

top-down predictions, Several authors e.g., [83,89–92] use

recurrent networks to implement this fusion. Exact Bayesian

schemes based on discrete hierarchical hidden Markov models,

specified as a temporal hierarchy, have been used to implement

memory and recognition [93]. Here, we have used the free-energy

principle (i.e. variational Bayesian inference on continuous

hierarchical dynamical systems) to show how the ensuing

recognition process leads naturally to a scheme which can deal

with fast sequential inputs.

In conclusion, we have described a scheme for inferring the

causes of sensory sequences with hierarchical structure. The key

features of this scheme are: (i) the ability to describe natural

sensory input as hierarchical and dynamic sequences, (ii) modeling

this input using generative models, (iii) using dynamic systems

theory to create plausible models, and (iv) online Bayesian

inversion of the resulting models. This scheme is theoretically

principled but is also accountable to the empirical evidence

available from the auditory system; furthermore, the ensuing

recognition dynamics are reminiscent of real brain responses.

Supporting Information

Audio S1 Phoneme sequence generated in first simulation -

mpg-file containing phoneme sequence sampled at 22050 Hz. The

time courses of the four vowels can be seen in Fig. 3A (top left).

Found at: doi:10.1371/journal.pcbi.1000464.s001 (0.18 MB

MPG)
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